CS106B Handout #12
Winter 2017 February 6, 2017

Assignment 4: Recursion to the Rescue!

Thanks to Nick Bowman and Eli Echt-Wilson for providing historical election data.
Thanks to Julie Zelenski, Marty Stepp, and Jerry Cain for their input on this assignment.

Recursion is an extremely powerful problem-solving tool with tons of practical applications. This assign-
ment consists of four real-world recursion problems, each of which we think is interesting in its own right.
By the time you’re done with this assignment, we think you’ll have a much deeper appreciation both for
recursive problem solving and for what sorts of areas you can apply your newfound skills to.

This assignment, like the preceding one, explores a lot of different concepts in recursion. If you start typ-
ing out code without a clear sense of how your recursive solution will work, chances are you’ll end up go-
ing down the wrong path. Before you begin coding, try thinking about the recursive structure of the code
you're writing. Does anything fall into one of the nice categories we’ve seen before (listing subsets, per-
mutations, combinations, etc.)? Is there a nice decision tree you can draw? If you're using backtracking,
what choices can you make at each step? Talking through these questions before you start coding and
making sure you have a good conceptual understanding of what it is that you need to do can save you
many, many hours of coding and debugging.

As always, feel free to stop by the LalR (or CLalR, which is specifically designed for conceptual ques-
tions), to email your section leader, to stop by Anton or Keith’s office hours, or to visit Piazza if you have
any questions. We’re happy to help out.

You have a lot of time to complete this assignment, so make sure that you’re not putting it off to the last
minute. Here’s a rough timetable that we think should be pretty manageable:

« Read over this handout to see what questions are asked as soon as you get it.
« Complete Problem One by Wednesday, February 8.

- Complete Problem Two by Friday, February 10™.

- Complete Problem Three by Monday, February 13™.

- Complete Problem Four by Wednesday, February 15™.

+ Add in extensions and submit everything on Thursday, February 16",

Best of luck on this assignment!

Due Friday, February 17™ at the start of lecture.

You are encouraged to work in pairs on this assignment.
Just don’t work in pairs by splitting the assignment cleanly in half. ©

Problem One: Doctors Without Orders

You've helped Recursia build out its health care system, but it now faces a crisis! No one has told the Re -
cursian doctors which patients to see — they’re Doctors Without Orders! As Minister of Health, it's time
to, once again, help the Recursians with their medical needs.

Consider the following two structs, which represent doctors and patients, respectively:

struct Doctor { struct Patient {
string name; string name;
int hoursFree; int hoursNeeded;
}s +s

Each doctor has a number of hours that they're capable of working in a day, and each patient has a num-
ber of hours that they need to be seen for. Your task is to write a function

bool canAllPatientsBeSeen(const Vector<Doctor>& doctors,
const Vector<Patient>& patients,
Map<string, Set<string>>& schedule);

that takes as input a list of available doctors, a list of available patients, then returns whether it's possible
to schedule all the patients so that each one is seen by a doctor for the appropriate amount of time. Each
patient must be seen by a single doctor, so, for example, a patient who needs five hours of time can't be
seen by five doctors for one hour each. If it is possible to schedule everyone, the function should fill in the
final schedule parameter by associating each doctor’s name (as a key) with the set of the names of pa-
tients she should see (the value).

For example, suppose we have these doctors and these patients:

« Doctor Thomas: 10 Hours Free « Patient Lacks: 2 Hours Needed
« Doctor Taussig: 8 Hours Free - Patient Gage: 3 Hours Needed
« Doctor Sacks: 8 Hours Free « Patient Molaison: 4 Hours Needed
« Doctor Ofri: 8 Hours Free « Patient Writebol: 3 Hours Needed

« Patient St. Martin: 1 Hour Needed

- Patient Washkansky: 6 Hours Needed
- Patient Sandoval: 8 Hours Needed

« Patient Giese: 6 Hours Needed

In this case, everyone can be seen:

+ Doctor Thomas (10 hours free) sees Patients Molaison, Gage, and Writebol (10 hours total)
« Doctor Taussig (8 hours free) sees Patients Lacks and Washkansky (8 hours total)

» Doctor Sacks (8 hours free) sees Patients Giese and St. Martin (7 hours total)

« Doctor Oftri (8 hours free) sees Patient Sandoval (8 hours total)

However, minor changes to the patient requirements can completely invalidate this schedule. For exam-
ple, if Patient Lacks needed to be seen for three hours rather than two, then there wouldn’t be a way to
schedule all the patients so that they can be seen. On the other hand, if Patient Washkansky needed to be
seen for seven hours instead of six, then there would indeed a way to schedule everyone. (Do you see
how?)

This problem is all about recursive backtracking. Think about what decision you might make at each
point in time. How do you commit to the decision and then undo it if it doesn’t work? And, as always, feel
free to introduce as many helper functions as you’d like. You may even want to make the primary func-
tion a wrapper around some other recursive function.

2/9

http://www.doctorswithoutborders.org/
https://en.wikipedia.org/wiki/Milwaukee_protocol
http://www.sacbee.com/news/local/health-and-medicine/article119189263.html
https://en.wikipedia.org/wiki/Helen_B._Taussig
https://en.wikipedia.org/wiki/Vivien_Thomas

Some notes on this problem:

You can assume that schedule is empty when the function is called.

If your function returns false, the final contents of the schedule don’t matter (though we suspect
your code will probably leave it blank).
Although the parameters to this function are passed by const reference, you're free to make extra
copies of the arguments or to set up whatever auxiliary data structures you'd like in the course of
solving this problem. For example, if you want to change some information about one of the doc-
tors, you might try something like this:

Vector<Doctor> updatedDocs = doctors;
/* .. make changes to updatedDocs .. */

if (canAllPatientsBeSeen(updatedDocs, ..)) {
/* .. much mirth and whimsy .. */
}

If you find you're “fighting” your code — that an operation that seems simple is actually taking a lot
of lines to accomplish — it might mean that you need to change up your data structures.

You can assume no two doctors have the same name and no two patients have the same name.

You may find it easier to solve this problem first by simply getting the return value right and ignor-
ing the schedule parameter. Once you're sure that your code is always producing the right an-
swer, update it so that you actually fill in the schedule. Doing so shouldn’t require too much code,
and it’s way easier to add this in at the end than it is to debug the whole thing all at once.

If there’s a doctor who doesn’t end up seeing any patients, you can either include the doctor’s
name as a key in the schedule associated with an empty set of patients or leave the doctor out en-
tirely, whichever you’d prefer.

3/9

Problem Two: Disaster Preparations

Disasters — natural and unnatural — are inevitable, and cities
need to be prepared to respond to them when they occur.
The problem is that stockpiling emergency resources can be
really, really expensive. As a result, it's reasonable to have
only a few cities stockpile emergency resources, with the
plan that they'd send those resources from wherever they're
stockpiled to where they're needed when an emergency hap-
pens. The challenge with doing this is to figure out where to
put resources so that (1) we don't spend too much money
stockpiling more than we need, and (2) we don't leave any
cities too far away from emergency supplies.

Imagine that you have access to a country's major highway
networks. We can imagine that there are a number of differ-
ent cities, some of which are right down the highway from
others. To the right is a fragment of the US Interstate High-
way System for the Western US. Suppose we put emergency
supplies in Sacramento, Butte, Las Vegas, Barstow, and No-
gales (shown in gray). In that case, if there's an emergency in
any city, that city either already has emergency supplies or is
immediately adjacent from a city that does. For example, any
emergency in Nogales would be covered, since Nogales al-
ready has emergency supplies. San Francisco could be cov-
ered by supplies from Sacramento, Salt Lake City is covered
by both Sacramento and Butte, and Barstow is covered both
by itself and by Las Vegas.

Although it’s possible to drive from Sacramento to San
Diego, for the purposes of this problem the emergency sup-
plies stockpiled in Sacramento wouldn’t provide coverage to
San Diego, since they aren’t immediately next to one another.

We'll say that a country or region is disaster-ready if it has this property: that is, every city either already
has emergency supplies or is immediately down the highway from a city that has them. Your task is to
write a function

bool canBeMadeDisasterReady(const Map<string, Set<string>>& roadNetwork,
int numCities,
Set<string>& locations);

that takes as input a Map representing the road network for a region (described below) and a number of
cities that can be made to hold supplies, then returns whether it's possible to make the region disaster-
ready by placing supplies in at most numCities cities. If so, the function should then populate the argu-
ment Llocations with all of the cities where supplies should be stored.

In this problem, the road network is represented as a map where each key is a city and each value is a set
of cities that are immediately down the highway from them. For example, here's a fragment of the map
you'd get from the above transportation network:

"Sacramento": {"San Francisco", "Portland", "Salt Lake City", "Los Angeles"}
"San Francisco": {"Sacramento"}
"Portland": {"Seattle", "Sacramento", "Salt Lake City"}

479

https://www.dhs.gov/sites/default/files/publications/FY2017_BIB-MASTER.pdf#page=10

As in the first part of this assignment, you can assume that locations is empty when this function is first
called, and you can change it however you'd like if the function returns false.

There are many different strategies you can use to solve this problem, and some are more efficient than
others. For example, one option would be to treat this problem as a combinations problem, trying out
each combination of cities of the given size and seeing whether any of them would make the cities disas-
ter ready. This option works, but it will be extremely slow on some of the larger test cases where there are
over thirty cities — so slow in fact that your program might never give back an answer!

Here’s a useful insight that might help you come up with a much faster
solution. Imagine there’s some city X in the transportation grid that’s ad-
jacent to four neighboring cities, as shown here. Any collection of cities e
that makes this grid disaster ready is going to have to provide some kind

of coverage to city X. Even if you have no idea which cities get chosen
in the long run, you can say for certain that you'll need to include at least

one of A, B, C, D, or X. a

So consider approaching this problem in the following way. Find a city

that’s uncovered, then think of all the different ways you could cover it

(either by choosing an adjacent city or by choosing the city itself). If you

can cover all the remaining cities after making any of those choices, con- e e
grats! You're done. On the other hand, if no matter which of these

choices you commit to you find that there’s no way to cover all the cities,
you know that no solution to your particular subproblem exists.

This second approach tends to run a lot faster than the first. The recursion focuses more of its effort look -
ing at adding cities that make an impact, and it’s a lot more obvious when you're in a dead-end.

Some notes on this problem:

« The road network is bidirectional. If there’s a road from city A to city B, then there will always be
a road back from city B to city A in the network, and both roads will be present in the parameter
roadNetwork. You can rely on this.

- Every city appears as a key in the map. Cities can exist that aren’t connected to any other cities in
the transportation network. If that happens, the city will be represented by a key in the map asso-
ciated with an empty set of adjacent cities.

- If you're allowed to use up to, say, k cities, but you find a way to solve the problem using fewer
than k cities, that’s fine! The set of cities you return can contain any number of cities provided that
you don’t use more than k and you properly cover everything.

The test cases we’ve bundled with the starter code here include some simplified versions of real trans-
portation networks from around the world. Play around with them and let us know if you find anything in-
teresting as you do! Our starter code also contains an option to use your code to find the minimum num-
ber of cities needed to provide disaster protection in a region, which you might find interesting to try out
once you’ve gotten your code working.

A note: some of the test files that we’ve included have a lof of cities in them. The provided test cases
whose names start with VeryHard are, unsurprisingly, very hard tests that may require some time to
solve. It’s okay if your program takes a long time (say, at most two minutes) to answer queries for those
maps, though if you use the strategy outlined above you should probably be able to get solutions back for
them in only a matter of seconds.

5/9

Problem Three: DNA Detective

You're working in a hospital and, to your dismay, there's been an outbreak of the antibiotic-resistant bac-
terium MRSA. You're not sure where the disease came from, whether it's endemic in the community, or
whether it's a well-known strain. Fortunately, you've got a number of DNA samples from the bug, and
your handy gene sequencer has returned back to you a rough copy of its genome. If you can figure out
whether the different samples you're getting from different patients are all from the same strain of MRSA,
you can take specific actions to try to end the spread quickly.

DNA consists of paired strands of nucleotides. The nucleotides used in DNA are adenine, cytosine, gua-
nine, and thymine, usually just abbreviated A, C, G, and T, and DNA strands are often represented as
strings made from these letters.

When DNA sequencing machines return back the specific sequence of nucleotides that make up a partic-
ular strand of DNA, they often have a small number of errors. For example, if there's a part of a DNA
strand that actually reads GTGTC, then the sequencer might report it as GTGTA (substituting one letter
for another), GTGT (dropping a letter), or GTGTAC (inserting a letter). One way of quantifying how
“close” two DNA strands are to one another is to use a measure called edit distance. Specifically, the edit
distance between two strings is defined as the number of single-letter insertions, deletions, and replace-
ments needed to turn the first string into the second. For example:

- The strings cat and dog have edit distance 3. The fastest way to turn cat into dog is to replace
each letter in cat with the corresponding letter from dog.

« The strings table and maple have edit distance 2. The fastest way to turn table into maple is to
replace the t in table with an m and the b in table with a p.

- The strings rate and pirate have edit distance 2. The fastest way to turn rate into pirate is to
prepend a p and an i.

« The strings edit and distance have edit distance 6. Specifically, delete the e from edit, insert
an s between the i and the t, and append the letters ance onto the back.

Let's jump back to our outbreak example. Imagine you sequence the DNA of a sample of MRSA that
you've found in one patient and the DNA of a sample of MRSA you found in another patient. The se-
quencer will likely come back with some small number of errors in it. If the edit distance between the two
DNA strands is low, it likely means that you're looking at essentially the same organism, meaning that the
patients either got the bug from the same source or one gave it to another. On the other hand, if the edit
distance is large, it likely means you're looking at two independent sources of infection.

Your task is to write a function
bool approximatelyMatch(const string& one, const string& two, int maxDistance)

that takes as input two strings representing strands of DNA and a number maxDistance, then returns
whether the edit distance between the two DNA strands is maxDistance or less.

As a hint for this problem, look at the first characters of one and two and think about what you might do
with what you find. What happens if they match? If they don’t match, you have three possible ways that
you can get them to match — what are they, and how might you try them? And what happens if either in-
put string is empty?

Some notes on this problem:
« You can assume the strings passed as input consist purely of the letters A, C, T, and G.

« It’s entirely possible to solve this problem without using loops of any kind. In fact, if you do find
yourself writing loops in your solution to this particular problem, it might indicate that you're
missing a much easier line of reasoning.

6/9

http://www.girlsteachinggirlstocode.org/
http://www.cam.ac.uk/research/news/bacterial-dna-sequence-used-to-map-an-infection-outbreak
https://en.wikipedia.org/wiki/Methicillin-resistant_Staphylococcus_aureus

Problem Four: Winning the Presidency

The President of the United States is not elected by a popular vote, but by a majority vote in the Electoral
College. Each state, plus DC, gets some number of electors in the Electoral College, and whoever they
vote in becomes the next President. For the purposes of this problem, we're going to make some simplify-
ing assumptions:

« You need to win a majority of the votes in a state to earn its electors, and you get all the state's
electors if you win the majority of the votes. For example, in a small state with only 99 people,
you'd need 50 votes to win all its electors. These assumptions aren’t entirely accurate, both be-
cause in most states a plurality suffices and some states split their electoral votes in other ways.

« You need to win a majority of the electoral votes to become president. In the 2008 election, you'd
need 270 votes because there were 538 electors. In the 1804 election, you'd need 89 votes be-
cause there were only 176 electors. (You can technically win the presidency without winning the
Electoral College; we'll ignore this for simplicity.)

- Electors never defect. The electors in the Electoral College are free to vote for whomever they
please, but the expectation is that they'll vote for the candidate that won their home state. As a
simplifying assumption, we'll just pretend electors always vote with the majority of their state.

This problem explores the following question: under these assumptions, what's the fewest number of pop-
ular votes you can get and still be elected President?

Imagine that we have a list of information about each state, represented by this handy struct:

struct State {
string name; // The name of the state
int electoralVotes; // How many electors it has
int popularVotes; // The number of people in that state who voted
This struct contains the name of the state, the number of electors (to the Electoral College) the state
gets, and its voting population. Your task is to write a function

MinInfo minPopularVoteToWin(const Vector<State>& states);

that takes as input a list of all the states that participated in the election (plus DC, if appropriate), then re-
turns some information about the minimum number of popular votes you'd need in order to win the elec-
tion (namely, how many votes you’d need, and which states you'd carry in the process). The MinInfo
structure is defined in the RecursionToTheRescue.h header and is essentially just a pair of a minimum
popular vote total plus the list of states you'd carry in the course of reaching that total:

struct MinInfo {
int popularVotesNeeded; // How many popular votes you'd need.
Vector<State> statesUsed; // The states you'd win in getting those votes.

3
To implement this function, we strongly recommend implementing a helper function that solves the fol-
lowing problem:

What is the minimum number of popular votes needed
to get at least V electoral votes, using only states from
index i and greater in the Vector?

Notice that if you solve this problem with V set to a majority of the total electoral votes and with i = 0,
then you’ve essentially solved the original problem (do you see why?). We strongly recommend making
your original function a wrapper around a helper function that solves this specific problem.

719

https://en.wikipedia.org/wiki/Faithless_electors_in_the_United_States_presidential_election,_2016
https://en.wikipedia.org/wiki/Faithless_electors_in_the_United_States_presidential_election,_2016
https://en.wikipedia.org/wiki/Twelfth_Amendment_to_the_United_States_Constitution
https://en.wikipedia.org/wiki/Twelfth_Amendment_to_the_United_States_Constitution
https://en.wikipedia.org/wiki/United_States_presidential_election_in_Maine,_2016
https://en.wikipedia.org/wiki/United_States_presidential_election_in_Michigan,_2016
https://en.wikipedia.org/wiki/Twenty-third_Amendment_to_the_United_States_Constitution

In the course of solving this problem, you might find yourself in the unfortunate situation where, for some
specific values of V and i, there’s no possible way to get V votes using only the states from index i and for-
ward. For example, if you're short 75 electoral votes and only have a single state left, there’s nothing that
you can do to win the election. In that case, you may want to have this helper function return some kind
of sentinel value indicating that it’s not possible to secure that many votes. We recommend using the spe-
cial value INT_MAX, which represents the maximum possible value that you can store in an integer. The
advantage of this sentinel value is that you're already planning on finding the strategy that requires the
fewest popular votes, so if your sentinel value is greater than any possible legal number of votes, always
choosing the option that requires the minimum number of votes will automatically pull you away from the
sentinel value.

When you first implement this function, we strongly recommend testing it out using the simplified test
cases we’'ve provided you from the main menu. These test cases use real election data, but only consider
ten states out of a larger election. That should make it easier for you to check whether your solution works
on smaller examples.

Without using memoization, it’s almost guaranteed that your code won’t be fast enough to work with the
full elections data. There’s just too many subsets of the states to consider. To scale this up to work with
actual elections data, you'll need to work memoization into your solution. The good news is that, if
you’ve followed the strategy we’ve outlined above, you should find that it’s relatively straightforward to in-
troduce memoization into your solution. Once you’ve gotten that working, try running your code on full
elections data. I think you’ll be pleasantly surprised by how fast it runs!

Here are some general notes on this problem:

+ The historical election data — and our reduced test cases — do not always include all 50 current US
states plus DC, either because those states didn’t exist yet, or DC didn’t have the vote, or because
those states didn’t participate in the election, so you shouldn’t assume that you’ll get them as input.

« The total number of Electoral College votes to win the election depends on the number of elec-
tors, which varies over time. Although you currently need 270 electoral votes to become Presi-
dent, you should not assume this in your solution.

- Remember that in all elections you need strictly more than half the votes to win. If there are ei-
ther 100 or 101 people in a state, you need 51 votes to win its electors. If there are either 538 or
539 total electoral votes, you'’d need 270 electoral votes to become president.

« You can represent the table in the memoization step in a number of different ways. One option
that isn’t mentioned in the textbook is the SparseGrid type, which depending on your approach
might be nice to know about. Check the documentation up on the CS106B course website for
more information.

Right before the 2016 election, NPR reported that 23% of the popular vote would be sufficient to win the
election, based on the 2012 voting data. They arrived at this number by looking at states with the highest
ratio of electoral votes to voting population. This was a correction to their originally-reported number of
27%, which they got by looking at what it would take to win the states with the highest number of elec-
toral votes. But the optimal strategy turns out to be neither of these and instead uses a blend of small and
large states. Once you’ve gotten your program working, try running it on the data from the 2012 election.
What percentage of the popular vote does your program say would be necessary to secure the presidency?

(A note: the historical election data here was compiled from a number of sources. In many early elections the state legislatures
decided how to choose electors, and so in some cases we extrapolated to estimate the voting population based on the overall US
population at the time and the total fraction of votes cast. This may skew some of the earlier election results. However, to the best
of our knowledge, data from 1868 and forward is complete and accurate. Please let us know if you find any errors in our data!)

8/9

http://www.npr.org/2016/11/02/500112248/how-to-win-the-presidency-with-27-percent-of-the-popular-vote
https://en.wikipedia.org/wiki/United_States_presidential_election,_1864

Part Five: (Optional) Extensions!

There are tons of variations on these problems that you could imagine trying to solve and lots of ways you
could apply them. Here are some suggestions:

Doctors Without Orders: There are a number of variations you could make on this problem. For
example, what happens if some of the doctors have various specialties (ophthalmology, physiatry,
cardiology, neurology, etc.) and each patient needs to be seen only by a specialist of that sort?

What happens if you want to distribute the load in a way that's as “fair” as possible, in the sense
that the busiest and least busy doctors have roughly the same hourly load? What happens if you
can’t see everyone, but you want to see as many people as possible?

Disaster Planning: There are a number of underlying assumptions in this problem. We're assum-
ing that there will only be a disaster in a single city at a time, that the road network won't be dis-
rupted, and that there's only a single class of emergency supplies. What happens if those assump-
tions are violated? For example, what if there's a major earthquake in the Cascadia Subduction
Zone, striking both Portland and Seattle (with some aftereffects in Sacramento) and disrupting
I-5 up north?

What if you need to stockpile blankets, food, and water separately, and each city can only store
one? See how you might go about finding the most efficient ways to stockpile supplies under these
assumptions.

DNA Detective: This problem is a really good candidate for memoization, since you'll often make
all sorts of different calls to the same recursive subproblems. Rewrite your code to use memoiza-
tion, then clock its behavior before and after making the change. What do you find?

In the real world, certain types of substitutions, insertions, and deletions are more likely to occur
in DNA than others. Research which types of errors are most likely, then see how you might
change the notion of edit distance to distinguish between bigger and smaller errors.

Winning the Presidency: If you look at historical election data, you’'ll see that it’s not all that un-
common for a third-party candidate to win a good number of electoral votes. The Election of
1860, for example, was a four-way race, as was the one in 1912. (The Election of 1836 was an
impressive five-way race; the Whig party strategy was really interesting!) The 1992 election was
the most recent one in which a major third-party candidate got a good share of the popular vote.
Imagine that instead of having to win at least half of the votes in a state to win its electors, you
only need to get a third, or a fourth of the votes. How does that change your results?

In the event that there's an Electoral College tie, the choice of who becomes President gets sent to
the House of Representatives. Given the historical data, how many different possible outcomes are
there that result in an exact Electoral College tie?

On the non-technical side, are there any interesting stories you can tell based on the data you have
and the results you're getting? What policy recommendations, if any, could you make from them?

Submission Instructions

To submit your assignment, upload your RecursionToTheRescue.cpp file to Paperless. And that’s it!
You’re done!

Good luck, and have fun!

9/9

https://en.wikipedia.org/wiki/United_States_presidential_election,_1992
https://en.wikipedia.org/wiki/United_States_presidential_election,_1836
https://en.wikipedia.org/wiki/United_States_presidential_election,_1912
https://en.wikipedia.org/wiki/United_States_presidential_election,_1860
http://www.newyorker.com/magazine/2015/07/20/the-really-big-one
http://www.newyorker.com/magazine/2015/07/20/the-really-big-one

	Problem One: Doctors Without Orders
	Problem Two: Disaster Preparations
	Problem Three: DNA Detective
	Problem Four: Winning the Presidency
	Part Five: (Optional) Extensions!
	Submission Instructions

